高二文数选修4-4坐标系

用两种以上的方法证明三角形的三条高交于一点。... 用两种以上的方法证明三角形的三条高交于一点。 展开
 我来答
So思雨
2011-02-20
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
方法1:
三角形ABC中,AC、AB上的高为BE和CF。
显然三角形ABE相似于三角形ACF,故有AB/AC=AE/AF,即AF*AB=AE*AC (1)
过A作三角形ABC的高AD,分别交BE,CF,AB于O1,O2,D。
由三角形AFO2相似于三角形ADB得:AF/AO2=AD/AB,即AF*AB=AO2*AD (2)
由三角形AEO1相似于三角形ADC得:AE/AO1=AD/AC,即AE*AC=AO1*AD (3)
根据等式(1)(2)(3)有
AO1*AD=AO2*AD,
所以AO1=AO2,O1、O2重合,记重合点为O点,则O点均在高AD,BE,CF上,所以三角形ABC得三条高交于一点O。

方法2:
三角形ABC中,AC、AB上的高BE和CF交于O点,连接并延长AO交BC于D,只需证AD为高即可。
因为角BEC,角CFB均为直角,所以B、C、F、E四点共圆,记为圆BCFE,
由切割线定理知:AF*AB = AE*AC (4)
分别记直角三角形BOF,COE的外接圆为圆BOF,圆COE,
下面只需证明角BDA=90度即可,
反证:若角BDA小于90度,则角CDA大于90度,因BO,CO分别为圆BOF,圆COE的直径,所以点D在圆BOF外,在圆COE内,由切割线定理推论
AO*AD>AF*AB (点D在圆BOF外)
AO*AD<AE*AC (点D在圆COE内)
结合(4),得出矛盾,故角BDA不小于90度。
同理可证角BDA也不大于90度。
故角BDA=90度。即AD为高。

参考资料: http://zhidao.baidu.com/question/177465510.html?si=1

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式