已知∠AOB=90°,OM是∠AOB的平分线,按要求解答
展开全部
(1)①过P作PH⊥OA,PN⊥OB,垂足分别为H,N,
得∠HPN=90°,∴∠HPC+∠CPN=90°.
而∠CPN+∠NPD=90°,
∴∠HPC=∠NPD.
∵OM是∠AOB的平分线,
∴PH=PN,
又∵∠PHC=∠PND=90°,
∴△PCH≌△PDN,
∴PC=PD.
②∵PC=PD,∴∠PDG=45°,
而∠POD=45°,∴∠PDG=∠POD.
又∵∠GPD=∠DPO,
∴△POD~△PDG.
∴.
(2)若PC与边OA相交,
∵∠PDE>∠CDO,
∴△PDE~△OCD,
∴∠CDO=∠PED,
∴CE=CD,而CO⊥ED,
∴OE=OD,
∴OP=ED=OD=1.
若PC与边OA的反向延长线相交,
过P作PH⊥OA,PN⊥OB,垂足分别为H,N,
∵∠PDE>∠EDC,
∴△PDE~△ODC,
∴∠PDE=∠ODC.
∵∠OEC>∠PED,∴∠PDE=∠HCP.
而PH=PN,∴Rt△PHC≌Rt△PND,
∴HC=ND,PC=PD,∴∠PDC=45°,
∴∠PDO=∠PCH=22.5°,
∴OP=OC.设OP=x,则OH=ON=二分之根号二,
∴HC=DN=OD-ON=1-二分之根号二,而HC=HO+OC=二分之根号二+x,
∴1-二分之根号二=二分之根号二+x,∴x=根号二减一,即OP=根号二减一
得∠HPN=90°,∴∠HPC+∠CPN=90°.
而∠CPN+∠NPD=90°,
∴∠HPC=∠NPD.
∵OM是∠AOB的平分线,
∴PH=PN,
又∵∠PHC=∠PND=90°,
∴△PCH≌△PDN,
∴PC=PD.
②∵PC=PD,∴∠PDG=45°,
而∠POD=45°,∴∠PDG=∠POD.
又∵∠GPD=∠DPO,
∴△POD~△PDG.
∴.
(2)若PC与边OA相交,
∵∠PDE>∠CDO,
∴△PDE~△OCD,
∴∠CDO=∠PED,
∴CE=CD,而CO⊥ED,
∴OE=OD,
∴OP=ED=OD=1.
若PC与边OA的反向延长线相交,
过P作PH⊥OA,PN⊥OB,垂足分别为H,N,
∵∠PDE>∠EDC,
∴△PDE~△ODC,
∴∠PDE=∠ODC.
∵∠OEC>∠PED,∴∠PDE=∠HCP.
而PH=PN,∴Rt△PHC≌Rt△PND,
∴HC=ND,PC=PD,∴∠PDC=45°,
∴∠PDO=∠PCH=22.5°,
∴OP=OC.设OP=x,则OH=ON=二分之根号二,
∴HC=DN=OD-ON=1-二分之根号二,而HC=HO+OC=二分之根号二+x,
∴1-二分之根号二=二分之根号二+x,∴x=根号二减一,即OP=根号二减一
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询