求积分:∫1/(1+sinx+cosx)dx

 我来答
闭苗赫连子美
2019-01-16 · TA获得超过1225个赞
知道小有建树答主
回答量:1342
采纳率:100%
帮助的人:6.3万
展开全部
令t=tan(x/2),则sinx=(2t)/(1+t^2),cosx=(1-t^2)/(1+t^2),dx=(2dt)/(1+t^2),于是
1+sinx+cosx=1+[(2t)/(1+t^2)]+[(1-t^2)/(1+t^2)]=(2+2t)/(1+t^2),即1/(1+sinx+cosx)=(1+t^2)/(2+2t)
故∫1/(1+sinx+cosx)dx =∫[(1+t^2)/(2+2t)]*[ (2dt)/(1+t^2)]=∫[1/(1+t)]dt=ln|1+t|+C
又t=tan(x/2),所以∫1/(1+sinx+cosx)dx=ln|1+tan(x/2)|+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式