∫(0→1) arctan(e^x)/e^x dx

 我来答
茹翊神谕者

2021-11-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1674万
展开全部

简单计算一下即可,答案如图所示

备注

闪以营茜
2020-01-04 · TA获得超过1180个赞
知道小有建树答主
回答量:1908
采纳率:93%
帮助的人:9.3万
展开全部
给你思路吧 - - 具体自己算好么
化成
arctan(e^x)/e^2x d(e^x)
设e^x=u 此时注意0→1变成1→e
然后arctanu/u² du= -arctanu d(1/u)
然后分部积分 变成-[arctanu/u-∫1/u d(arctanu)]=-[arctanu/u-∫1/u*1/(1+u²)]du
现在主要就是化∫1/u*1/(1+u²)
∫1/u*1/(1+u²)=∫[1/u-u/(1+u²)]du=lnu-1/2*ln(1+u²)
然后1→e带进去算就行了
over.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式