设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间...

设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为()A.[-2... 设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为( ) A.[-2,6] B.[-20,34] C.[-22,32] D.[-24,28] 展开
 我来答
仆祖延蓉蓉
2020-05-07 · TA获得超过3549个赞
知道大有可为答主
回答量:3092
采纳率:32%
帮助的人:228万
展开全部
分析:由已知不妨设g(x)=-2,g(x1)=6,x,x1∈[2,3],利用f(x)的周期为1可求g(x+n).同理可求g(x1+n).再利用函数的单调性可求g(x)在[-12,12]上的最小值、最大值,从而得g(x)在[-12,12]上的值域.
解答:解:由g(x)在区间[2,3]上的值域为[-2,6],可设g(x)=-2,g(x1)=6,x,x1∈[2,3],g(x)=f(x)-2x=-2,
∵y=f(x)是定义在R上以1为周期的函数,∴g(x+n)=f(x+n)-2(x+n)=f(x)-2x-2n=-2-2n.
同理g(x1+n)=6-2n,
12-3=9,于是g(x)在[-12,12]上的最小值是-2-2×9=-20;-12-2=-14,于是g(x)在[-12,12]上的最大值是6-2(-14)=34.
∴函数g(x)在[-12,12]上的值域为[-20,34].
故选B.
点评:本题考查了函数的值域、函数的周期性及其应用,考查了利用所学知识解决问题的能力.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式