设P为△ABC内任一点,直线AP、BP、CP交BC、CA、AB于点D、E、F.求证AD分之PD+BE分之PE+CF分之PF=1

要过程(详细)... 要过程(详细) 展开
陶永清
2011-02-20 · TA获得超过10.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:66%
帮助的人:7856万
展开全部
证明:
因为△BDP和△ABD是等高三角形,
所以△BDP和△ABD的面积的比取决于底的比,即
S△BDP/S△ABD=DP/AD,
同理:S△CDP/S△ACD=DP/AD,
所以DP/AD=S△BDP/S△ABD=S△CDP/S△ACD
根据比的性质,得,
DP/AD=(S△BDP+S△CDP)/(S△ACD+S△ABD)=S△BCP/S△ABC,
同理:
PE/BE=S△ACP/S△ABC,
PF/CF=S△ABP/S△ABC,
所以
DP/AD+PE/BE+PF/CF
=S△BCP/S△ABC+S△ACP/S△ABC+S△ABP/S△ABC
=(S△BCP+S△ACP+S△ABP)/S△ABC
=S△ABC/S△ABC
=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式