级数求和:∑(n=1→∞)n/(n+1)!
2个回答
展开全部
∑1/n(n+1) = 1/(1*2) + 1/(2*3) + 1/(3*4) + .... + 1/(n(n+1))
= (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + .... + (1/n - 1/(n+1) )
去掉括号,除了第一项和最后一项抵消
= 1 - 1/(n+1)
n->∞, 1/(n+1) ->0
lim(n->∞) ∑1/n(n+1) = 1
每项比前项的比值较小,部分和也就增加较少而较倾向于有界,因此正项级数又有比值判别法。事实上,这都在于断定un的大小数量级。
扩展资料:
收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。
例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询