设a>0,函数f(x)=1/2x^2-(a+1)x+alnx

求函数f(x)的极值点。... 求函数f(x)的极值点。 展开
 我来答
乌纶奇初珍
2020-02-22 · TA获得超过3784个赞
知道大有可为答主
回答量:3131
采纳率:31%
帮助的人:430万
展开全部
解:
(1)由函数f(x)=1/2x^2-(a+1)x+alnx
,可知f(x)在x>0上有意义且是连续的,且在此区间上处处可导,且
f'(x)=x-(a+1)+a/x
(2)令f'(x)=0,得到驻点x=1,x=a;
(3)当0<a<1时,在(0,a)内,f'(x)>0;在(a,1)内,f'(x)<0;在(1,正无穷)内f'(x)>0
x
(0,a)
a
(a,1)
1
(1,正无穷)
f'(x)
+
0
-
0
+
f(x)

极大值

极小值

所以当0<a<1时,f(x)的极大值点是x=a,极小值点是x=1;
当a=1时,只有一个驻点x=1;在(0,正无穷)内f'(x)>=0,是单调增函数,没有极值点;
当a>1时,在(0,1)内,f'(x)>0;在(1,a)内,f'(x)<0;在(a,正无穷)内f'(x)>0
x
(0,1)
1
(1,a)
a
(a,正无穷)
f'(x)
+
0
-
0
+
f(x)

极大值

极小值

所以当a>1时,f(x)的极大值点是x=1,极小值点是x=a。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
网易云信
2023-12-06 广告
网易云信提供一站式的 1 对 1 UIKit 组件库,可以更快地搭建 1 对 1 社交平台,能够快速实现音视频呼叫、音视频通话、1对1消息发送、美颜和礼物功能,直接可以复用我们的组件源码就可以了。优势:1、全套1对1 UI组件,接入更快;2... 点击进入详情页
本回答由网易云信提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式