高数 函数极限 x趋近于0 等阶无穷小问题?

如图,使用等价无穷小把e^sinx为e^x再用等价无穷小把e^x-1化为x,可行吗?这样做有没有毛病主要是e^sinx->e^x这一步... 如图,使用等价无穷小把 e^sinx 为 e^x 再用等价无穷小把 e^x-1 化为 x, 可行吗?这样做有没有毛病 主要是 e^sinx -> e^x 这一步 展开
 我来答
李晖晖小童鞋
2020-10-15 · TA获得超过364个赞
知道小有建树答主
回答量:443
采纳率:88%
帮助的人:224万
展开全部
是不可行的,不过如果反过来,把分母x换成sinx这样才可以 然后再令t=sinx则x趋近0 t也趋近0 所以等式就变成了(e^t-1)/t得出最后的答案不过这道题因为其是一个0/0型极限,所以可以直接采用洛必达法则得e^sinx️️乘cosx/1那么把x=0代入 得到最终极限也是1 希望有所帮助。
scarlett110870
高粉答主

2020-10-15 · 关注我不会让你失望
知道大有可为答主
回答量:2万
采纳率:71%
帮助的人:4874万
展开全部
e^sinx-1不能化成e^x-1,正确的做法是分子直接等价于sinx,然后再继续计算。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式