数据分析需要掌握哪些知识?

 我来答
活宝佳佳328
2020-11-27 · TA获得超过6899个赞
知道大有可为答主
回答量:4476
采纳率:98%
帮助的人:105万
展开全部
数据分析定义

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。是有组织有目的地收集数据、分析数据,使之成为信息的过程。

数据分析分类

数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。

数据分析常用方法

1、PEST分析:

是利用环境扫描分析总体环境中的政治(Political)、经济(Economic)、社会(Social)与科技(Technological)等四种因素的一种模型。这也是在作市场研究时,外部分析的一部分,能给予公司一个针对总体环境中不同因素的概述。这个策略工具也能有效的了解市场的成长或衰退、企业所处的情况、潜力与营运方向。一般用于宏观分析。

2、SWOT分析:

又称优劣分析法或道斯矩阵,是一种企业竞争态势分析方法,是市场营销的基础分析方法之一,通过评价自身的优势(Strengths)、劣势(Weaknesses)、外部竞争上的机会(Opportunities)和威胁(Threats),用以在制定发展战略前对自身进行深入全面的分析以及竞争优势的定位。而此方法是Albert Humphrey所提。

3、5W2H分析:

用五个以W开头的英语单词和两个以H开头的英语单词进行设问,发现解决问题的线索,寻找发明思路,进行设计构思,从而搞出新的发明项目具体:

(1)WHAT——是什么?目的是什么?做什么工作?

(2)WHY——为什么要做?可不可以不做?有没有替代方案?

(3)WHO——谁?由谁来做?

(4)WHEN——何时?什么时间做?什么时机最适宜?

(5)WHERE——何处?在哪里做?

(6)HOW ——怎么做?如何提高效率?如何实施?方法是什么?

(7)HOW MUCH——多少?做到什么程度?数量如何?质量水平如何?费用产出如何?

4、7C罗盘模型:

7C模型包括

(C1)企业很重要。也就是说,Competitor:竞争对手,Organization:执行市场营销或是经营管理的组织,Stakeholder:利益相关者也应该被考虑进来。

(C2)商品在拉丁语中是共同方便共同幸福的意思,是从消费者的角度考虑问题。这也和从消费者开始考虑问题的整合营销传播是一致的,能体现出与消费者相互作用进而开发出值得信赖的商品或服务的一种哲学。经过完整步骤创造出的商品可以称之为商品化。

(C3)成本不仅有价格的意思,还有生产成本、销售成本、社会成本等很多方面。

(C4)流通渠道表达商品在流动的含义。创造出一个进货商、制造商、物流和消费者共生的商业模式。作为流通渠道来说,网络销售也能算在内。

(C5)交流

(C6)消费者

N = 需求(Needs):生活必需品,像水、衣服、鞋。
W = 想法(Wants):想得到的东西,像运动饮料、旅游鞋。
S = 安全(Security):安全性,像核电、车、食品等物品的安全。
E = 教育(Education):对消费者进行教育,为了能够让消费者也和企业一样对商品非常了解,企业应该提供给消费者相应的知识信息。
(C7)环境

N = 国内和国际:国内的政治、法律和伦理环境及国际环境,国际关系。
W = 天气:气象、自然环境,重大灾害时经营环境会放生变化,适应自然的经营活动是必要的。像便利店或是部分超市就正在实行。
S = 社会和文化:网络时代的社会、福利及文化环境理所当然应该成为考虑因素。
E = 经济:经济环境是对经营影响最大的,以此理所当然应该成为考虑因素。7C罗盘模型是一个合作市场营销的工具。
5、海盗指标法AARRR:是互联网常用的“用户增长模型”,黑客增长模型:

Acquisition:获取用户
Activation:提高活跃度
Retention:提高留存率
Revenue:获取收入
Refer:自传播

数据分析常用工具

日常数据分析用的最多的还是办公软件尤其excel、word、ppt,数据存储处理可能用到一些数据库结合access用,另外目前一般公司小型关系数据库用mysql的还是比较多免费、轻量级,还有较多的也在用pg。

其次分析师是用一些专业的分析软件spss,sas,自助分析用的BI软件平台如:finebi、tableau等。

finebi

其实想强调的是分析师40%-60%的时间可能会花在数据的获取、处理和准备上,所以最好能会点sql,个人觉得对于分析师与其去了解数据库,不如好好去学下sql,因为sql是标准化的数据查询语言,所有的关系型数据库包括一些开源的数据库甚至各公司内部的数据平台都对它有良好的支持。最后对于第三方的一些数据收集或者一些跨平台的数据处理,包括一些分析可以用finebi。

数据分析流程

有了 这些基础的理论和分析方法后,接下来具体的分析流程可参考:

1.提出问题(需求) 2.结论/假设 3.数据准备 4.数据分析 5.报告生成 结论验证。

我们按照如上的分析步骤来个示例:

XX产品首销,哪些用户最有可能来购买?应该给哪些用户进行营销?

第一步首先是提出了问题,有了需求。

第二步分析问题,提出方案,这一步非常重要,正如上面提到的第二三类的数据分析本身就是一个假设检验的过程,如果这一步不能很好的假设,后续的检验也就无从谈起。主要需要思考下从哪些方面来分析这个问题。

可以从三个方面:(PS:这里对于一些常规的属性比如:性别、年龄、地区分布了这些基本,老大早已心中有数,就不再看了)

1.曾经购买过跟XX产品相似产品的用户,且当前使用机型是XX产品上一或几代产品,有换机意愿需求的。

2.用户的关注程度用户是否浏览了新品产品站,是否搜索过新品相关的信息,是否参加了新品的活动。

3.用户的消费能力历史消费金额、历史购机数量、本年度购机金额、本年度购机数量、最近一次购机时间及金额等。

第三步准备数据:

创建分析表,搜集数据 这一步基本是最花时间的,这时候就是考量你的数据平台、数据仓库的时候了,仓库集成的好,平台易用的话时间应该不用太长。

第四步数据分析:笔者是把数据导入到finebi进行分析的,也可以用python,其实用excel也非常好,只是笔者对excel的有些处理不是很擅长。

第五步就是图表呈现,报告的表达了,最后我们验证得到的一个结论就是:购买过同类产品,关注度越高,复购周期越近的用户越最容易再次复购。

注:想要获取33个好用数据分析工具,可以私聊回复我“工具”获得!
中研普华
2023-10-12 广告
1)具有业务敏感度,反应迅速,能够良好沟通; 2)具有数据分析和数据仓库建模的项目实践经验; 3)3年及以上数据分析经验,有互联网产品、运营分析经验; 4)熟悉R、SAS、SPSS等统计分析软件,熟练运用Python,熟练使用 SQL... 点击进入详情页
本回答由中研普华提供
数据分析不是个事儿
2020-12-10 · 关于数据分析,积累了些心得与大家分享。
数据分析不是个事儿
采纳数:4 获赞数:11

向TA提问 私信TA
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
明德资本生态圈张晓丽
2022-06-28 · 百度认证:北京明德乾坤信息咨询有限公司官方账号
明德资本生态圈张晓丽
向TA提问
展开全部
数据分析需要学习以下几点:

一、统计学。二、编程能力。三、数据库。四、数据仓库。五、数据分析方法。六、数据分析工具。

想要成为数据分析师应该重点学习以下两点:

1.python、SQL、R语言

这些都是最基础的工具,python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。

2.业务能力

数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。

当然这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。


关于数据分析师的学习可以到CDA数据分析认证中心看看。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尚学堂前端学院
2020-12-08 · 百度认证:北京尚学堂科技官方账号
尚学堂前端学院
向TA提问
展开全部

您好,这个问题得根据您的岗位,不同的岗位对于知识的掌握有不同的要求,以下是我总结的对应岗位需要掌握的知识,希望对你有所帮助:

       1、数据产品经理

要求具备普通产品经理的能力(比如产品设计、产业运营、用户体验方面的技能)外,还需要具备数据分析师的技能,掌握简单的数据分析方法,能够通过数据需求分析提炼出产品原型,从而将数据产品化,一个公司的数据价值变现成功与否,跟数据产品经理的职业素养有极大的关系。牛逼的数据产品经理,自己也是一个数据分析师,不需要数据分析师的配合工作。

  2、数据分析师

要求不仅要懂得数据库SQL查询统计、excel透视分析等技能,牛一点的分析师还需要了解掌握数据挖掘算法,比如常见的四类模型,分类、聚类、关联、预测,每一类模型至少掌握一两种算法原理,能够用R/SAS/SPSS等把模型结果跑出来,能够看出和评判模型结果的好坏,能够在实际中应用模型的结果。他们跟数据挖掘工程师的差别在数据分析师对算法的掌握要求不那么高,只需要会用工具哪怕是可视化可拖拽的工具调用算法包跑出结果来,会评判会应用结果就可以了。当然啦,牛逼的数据分析师,同时也是一个数据挖掘工程师。数据分析师除了对分析方法的掌握外,还需要非常熟悉业务和产品,能够透过数据看到业务和产品的本质,他们是最具备商业敏感性的一群人,他们能预测公司和业务的未来,他们是公司数据价值的发现者,他们是产品经理、运营经理的最佳助手。

  3、数据挖掘工程师

不仅需要精通各种模型算法原理、还要求能用代码来实现算法,能对算法进行优化改进,能对模型进行部署、监控,能对模型进行不断的迭代优化。同时,还需要掌握大数据研发工程师的部分技能,比如大数据分布式计算方法等。数据挖掘工程师是最稀缺最贵的一类人才,其薪资在各大数据岗位中,平均水平是最高的,涨幅是最大的也是最快的。入门后的数据分析师往数据挖掘工程师转不失为一条绝佳路径。当然啦,数据挖掘工程师如果对业务对产品感兴趣,往数据分析师、数据产品经理转,那是非常轻而易举的事情。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
安徽新华电脑专修学院
2020-11-26 · 百度知道合伙人官方认证企业
安徽新华电脑专修学院
安徽新华电脑专修学院始建于1988年,隶属于新华教育集团,是国家信息化教育示范基地、中国 IT 教育影响力品牌院校.
向TA提问
展开全部
如果你打算成为一名数据分析师,你需要同时具备统计学、数据库、经济学三个领域的基础知识;英语四级或以上、熟悉指标英文名称;具备互联网产品设计知识。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式