解析几何包括哪些内容?
解析几何分作平面解析几何和空间解析几何。
在平面解析几何中,除了研究直线的有关性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。
如椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星天线、射电望远镜等都是利用抛物线的原理制成的。
相关内容解释:
平面与立体
最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。
广告 您可能关注的内容 |