数学十字交叉法原理如何解析?
“十字交叉法”是中学化学计算中常用的解题方法,尤其是在一些不要求计算过程的选择型和填空型计算题的解答中使用十分方便。但交叉后的比例关系所代表的含义对许多同学来说是一个盲点,只有明确了“十字交叉法”的原理,才能迅速解题。
一、“十字交叉法”的数学原理
物理量可分为两类:一类物理量不具有加和性,如密度、浓度、摩尔质量等,这类物理量称为“强度量”;另一类物理量则具有加和性,如质量、体积、物质的量等,这类物理量称为“广度量”。
某混合物由两组分混合而成,设a1、a2(a1>a2)分别为两组分的某强度量,a为混合物的某强度量,x1、x2分别为混合物中两组分的某广度量,若满足下列方程式:a1x1+a2x2=a(x1+x2),可知x1(a1-a)=x2(a-a2),则=(即混合物中两组分某广度量之比)。
凡满足上述方程式的量都可以用“十字交叉法”表示如下:
a1 a-a2 x1
a =
a2 a1-a x2
【例题】H2和NH3形成的混合气体,其平均摩尔质量为14·mol-1,求H2和NH3的物质的量之比。
【解析】(1)用“数学法”求解:
设H2的物质的量为x1mol,NH3的物质的量为x2mol,则:2x1+17x2=14(x1+x2),解得:。
(2)用“十字交叉法”求解:
17 12 4 x2
二、“十字交叉法”所求比值的含义——“看分母法则”
当我们明确了“十字交叉法”的数学原理后,很自然地会产生这样的疑问:上述广度量的比值(即)代表什么含义?与强度量有何关系?解决这个问题是我们正确使用“十字交叉法”的关键。由于存在“强度量×广度量”,可知广度量的含义与强度量的物理意义有关。
例如,摩尔质量这个强度量等于物质的质量除以该物质的物质的量,则其对应的广度量应为物质的量,也就是摩尔质量这个强度量的分母所表示的物理量,十字交叉后的比值为两组分的物质的量之比(如上述例题)。
由以上可知:十字交叉后的比例关系为该强度量的分母所表示的广度量之比。
2024-11-14 广告