![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
e的sinx次方泰勒展开
2个回答
展开全部
f(x) = e^(sinx) =>f(0) =1
f'(x) = cosx. e^(sinx) => f'(0)/1! = 1
f''(x) = [(cosx)^2-sinx ].e^(sinx) => f''(0)/2! = 1/2
e^(sinx)
=1+x +(1/2)x^2+....
f'(x) = cosx. e^(sinx) => f'(0)/1! = 1
f''(x) = [(cosx)^2-sinx ].e^(sinx) => f''(0)/2! = 1/2
e^(sinx)
=1+x +(1/2)x^2+....
展开全部
e^sinx = 1 + sinx + sin^2x/2! + sin^3x/3! + ... + sin^nx/n!, {n->oo}
= 1 + [x - x^3/3! + x^5/5! - ... + x^(2n+1)/(2n+1)!] + [x - x^3/3! + x^5/5! - ... + x^(2n+1)/(2n+1)!]^2/2! + [x - x^3/3! + x^5/5! - ... + x^(2n+1)/(2n+1)!]^3/3! + ...
= 1 + x + x^2/2 - x^4/8 + O(x^5)
= 1 + [x - x^3/3! + x^5/5! - ... + x^(2n+1)/(2n+1)!] + [x - x^3/3! + x^5/5! - ... + x^(2n+1)/(2n+1)!]^2/2! + [x - x^3/3! + x^5/5! - ... + x^(2n+1)/(2n+1)!]^3/3! + ...
= 1 + x + x^2/2 - x^4/8 + O(x^5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询