反三角函数的定义域是什么?

 我来答
云云0710
2021-02-03 · 长得漂亮是优势,活得漂亮是本事
云云0710
采纳数:55 获赞数:7606

向TA提问 私信TA
展开全部

1、反正弦函数y=arcsinx,

表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间bai内。

定义域[-1,1]。

2、反余弦函数y=arccosx,

表示一个余弦值为x的角,该角的范围在[0,π]区间内。

定义域[-1,1]。

3、反正切函数y=arctanx,

表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。

定义域R。

4、反余切函数y=arccotx,

表示一个余切值为x的角,该角的范围在(0,π)区间内。

定义域R。

扩展资料:

为了使单值反三角函数所确定的区间具有代表性,通常需要满足以下条件:

1、 为了保证函数与自变量的单值对应,确定的区间必须是单调的;

2、 在这个区间内函数最好是连续的(这里是最好的,因为arc-sec和arc- csc函数是尖端);

3、为了便于研究,所选区间通常要求包含0到π/2的角度;

4、函数在确定区间上的取值范围应与积分函数的定义范围一致。由此确定的反三角函数是单值的。为了与上面的多值反三角函数不同,在Arc中,A的表示法常被改为A。例如,单值的arcsin函数被记为arcsinx。

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
银丰花芮悦
2021-05-27 · TA获得超过1197个赞
知道小有建树答主
回答量:2009
采纳率:86%
帮助的人:9.9万
展开全部
01 反三角函数分为:反正弦函数,反余弦函数,反正切函数,反余切函数,反正割函数,反余割函数,其中反正弦函数与反余弦函数的定义域是[-1,1],反正切函数和反余切函数的定义域是R,反正割函数和反余割函数的定义域是(-∞,-1]U[1,+∞)。

反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。 

三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。

为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);为了使研究方便,常要求所选择的区间包含0到π/2的角;所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。

余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式