求函数y=(cosx)^2的n阶导数的一般表达式
1个回答
展开全部
y=(cosx)^2
y' = -2cosxsinx= -sin2x
y''= -2cos2x
y'''= 4sin2x
y''''= 8cos2x
y'''''=-16sin2x
y^(6)= -32cos2x
y^(7)= 64sin2x
.
.
y^(n)x = (-1)^[(n+1)/2].2^(n-1).sin2x if n is odd
= (-1)^(n/2) .2^(n-1) .cos2x if n is even
y' = -2cosxsinx= -sin2x
y''= -2cos2x
y'''= 4sin2x
y''''= 8cos2x
y'''''=-16sin2x
y^(6)= -32cos2x
y^(7)= 64sin2x
.
.
y^(n)x = (-1)^[(n+1)/2].2^(n-1).sin2x if n is odd
= (-1)^(n/2) .2^(n-1) .cos2x if n is even
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询