试问函数f(x)=x+sinx是否为周期函数?请证明你的结论.

 我来答
新科技17
2022-06-12 · TA获得超过5983个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:79.8万
展开全部
函数f(x)=x+sinx不是周期函数
用反证法证明如下:
假设函数f(x)的周期函数,且其一个周期为T,(T≠0),则有f(x+T)=f(x)成立,
即x+T+sin(x+T)=x+sinx,
则T+sin(x+T)=sinx,对一切实数x均成立,
取x=0有T+sinT=0,①
取x=π有T-sinT=0,②
联立①、②,可得T=0,
此与T≠0相矛盾,所以假设不成立;
于是可知,函数f(x)=x+sinx不是周期函数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式