直角三角形的内切圆半径与三边关系公式怎么证明?

 我来答
华源网络
2022-06-16 · TA获得超过5621个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:151万
展开全部
已知:Rt△ABC中∠C=90°,内切圆⊙O分别切AB、BC、CA于D、E、F
求证:⊙O半径=(a+b-c)/2
证明:∵⊙O切AB、BC、CA于点D、E、F,
由切线长定理得:AE=AF、BD=BF,∴AC+BC-AB=AE+CE+BD+CD-AF-BF=CD+CE
∵四边形CDOE中,∠C=∠CDO=∠CEO=90°且OD=OE,
∴四边形CDOE是正方形,CD=CE=OD,
∴⊙O半径OD=CD=(AC+BC-AB)/2=(a+b-c)/2,证毕.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式