小学教案《列方程解应用题》

 我来答
顺心还婉顺的君子兰5882
2022-07-13 · TA获得超过5538个赞
知道小有建树答主
回答量:273
采纳率:0%
帮助的人:66.9万
展开全部

小学教案《列方程解应用题》

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。那么写教案需要注意哪些问题呢?以下是我帮大家整理的小学教案《列方程解应用题》,欢迎阅读与收藏。

小学教案《列方程解应用题》1

  教学目标:

  1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

  2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

  3.培养学生利用恰当的方法解决实际问题的能力。

  教学重点:

  通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.

  教学难点:

  通过复习,使学生能够准确的找出题目中的等量关系.

  教学过程:

  一、复习准备.(P107)

  1.找出下列应用题的等量关系.

  ①男生人数是女生人数的2倍.

  ②梨树比苹果树的3倍少15棵.

  ③做8件大人衣服和10件儿童衣服共用布31.2米.

  ④把两根同样的铁丝分别围成长方形和正方形.

  ( 学生回答后教师点评小结)

  我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

  二、新授内容

  1、教学例3、

  (1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

  ①.读题,学生试做.

  ②.学生汇报(可能情况)

  (90+75)×4

  提问:90+75求得是什么问题?再乘4求的是什么?

  90×4+75×4

  提问:90×4与75×4分别表示的是什么问题?

  (由学生计算出甲乙两站的铁路长多少千米。)

  (2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

  (先用算术方法解,再用方程解)

  ①、660÷(90+75)=?

  ②方程

  解: 设经过x小时相遇,

  (90+75)×x =660 或者, 90×x +75×x =660

  让学生说出等量关系和解题的思路

  教师小结(略)

  (3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

  ( 先用算术方法解,再用方程解)

  ①、(660—90×4)÷4=?

  ②、方程

  解:设货车每小时行x千米

  90×4+ 4x = 660 或者(90 + x )×4 = 660

  让学生说出等量关系和解题的思路

  教师小结(略)

  让学生比较上面三道应用题,它们有什么联系和区别?

  比较用方程解和用算术方法解,有什么不同?

  教师提问:这两道题有什么联系?有什么区别?

  三、巩固反馈.(P109---1题)

  1.根据题意把方程补充完整.

  (1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.

  _____________=53

  _____________=116

  (2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.

  _____________=139.5

  _____________=9.6×3

  (3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.

  _____________=280×3

  2.(P110----4题)解应用题.

  东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

  小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

  3.思考题.

  甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

  四、课堂总结.

  通过今天的复习,你有什么收获?

  五、课后作业.

  (P110---5题)不抄题,只写题号。

  板书设计:

  列方程解应用题

  等量关系 具体问题具体分析

  例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千

小学教案《列方程解应用题》2

  有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

  例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?

  分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

  设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

  解:设有胶鞋x双,则有布鞋(46-x)双。

  7.5x-5.9(46-x)=10,

  7.5x-271.4+5.9x=10,

  13.4x=281.4,

  x=21。

  答:胶鞋有21双。

  分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以

  答:袋中共有74个球。

  在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。

  例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[

  分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  80x-40=(30x+40)×2,

  80x-40=60x+80,

  20x=120,

  x=6(座)。

  分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)×80=(2x+40)×30,

  80x-3200=60x+1200,

  20x=4400,

  x=220(米3)。

  由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

  同理,也可设有红砖x米3。留给同学们做练习。

  例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?

  分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程

  x-10=[(x-10)×2-9]×5,

  x-10=(2x-29)×5,

  x-10=10x-145,

  9x=135,

  x=15(个)。

  例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:

  还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?

  分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,

  0×7+1×5+2×4+6×(x-7-5-4)

  = 5+8+6×(x-16)

  = 6x-83,

  也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,

  = 3×(x-8)+24+36+10

  = 3x+46。

  由此可得方程

  6x-83=3x+46,

  3x=129,

  x=43(人)。

  例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。

  分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程

  4÷(150-3x)=8÷(150-x),

  4×(150-x)=8×(150-3x),

  600-4x=1200-24x,

  20x=600,

  x=30(千克)。

  练习23

  还剩60元。问:甲、乙二人各有存款多少元?

  有多少溶液?

  3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?

  4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?

  5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?

  含金多少克?

  7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?

小学教案《列方程解应用题》3

   教学内容

  列方程解应用题

   教学目标

  1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。

  2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

  3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

   教学重点

  列方程解答数量关系稍复杂的两、三步应用题。

   教学难点

  形如:ax+bx=c的数量关系

   教学理念

  培养学生自主探究、合作交流的学习方式。提高学生的检验能力。

   教师活动过程

  学生活动过程 备注

   一、复习铺垫

  1练习二十一T1

  学生回答

  2根据条件说出数量关系式:

  果园里的桃树和梨树一共有168棵。

  果园里的桃树比梨数多84棵。

  桃树棵数是梨树的3倍。

  学生回答数量关系式

  3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!

  学生自主编题,口头说题

  4依据学生回答,教师出示题目。

  A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?

  B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)

  C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)

  教师巡视,了解情况。

   二.探究新知

  1.学生尝试例1

  引导学生画出线段图

  集中反馈:生说师画图

  2.教师组织学生汇报

  学生介绍算术解法时,教师引导学生画线段图理解数量间的'关系。

  学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。

  3.小组讨论。

  解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?

  用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?

  4.学生独立完成想一想。

  这一题与例1有什么相同的地方?有什么不同的地方?

  明确三点:1、一般设一倍数为X 。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。

  5完成课本94页练一练

  指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?

   三、小结

  本课学习了什么内容?你有哪些收获?

   四、作业

小学教案《列方程解应用题》4

  一、教学内容:

  教材第94页例1、“练一练”,练习二十—第1—4题。

  二、教学要求:

  使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。

  三、教学过程:

  一、复习导入。

  1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)

  2、根据下列句子说出数量之间的相等关系。

  杨树和柳树一共120棵

  杨树比柳树多120棵

  杨树比柳树少120棵

  3、出示线段图:梨树:

  桃树:

  从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?

  4、出示条件:母鸡的只数是公鸡的5倍。

  根据这个条件,你可以知道什么?如果公鸡的只数用x表示,那么母鸡的只数可以怎样来表示?

  5、在括号里填上含有字母的式子。(练习二十一第1题)

  6、交流:板演,你是根据怎样的数量关系来解答的?

  7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)

  二、教学新课。

  1、教学例1 果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?

  (1)齐读。

  (2)这道题已知什么条件,要求什么问题?边问边画出线段图。

  桃树的棵数是梨树的3倍,把哪个数量看做一份?用线段图来表示我们先画梨树,桃树的棵数有这样的几份?还告诉我们什么条件?这道题的问题是什么?

  (3)“梨树和桃树各有多少棵”是什么意思?

  这道题要求的数量有两个,你认为用什么方法做比较简便?

  (4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。

  (5)交流。

  (6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。

  校对板演。还可以怎样求桃树的棵树?

  (7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。

  2、教学想一想。

  现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)

  一生板演,其余齐练。

  集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?

  3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)

  4、小结。

  从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。

  三、巩固练习。

  1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?

  2、只列式不计算。

  一个自然保护区天鹅的只数是丹顶鹤的2.2倍。

  (1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?

  (2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?

  3、选择正确的解法。

  明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?

  (1)解:设鸡和鸭各有x只。 x+3x=56

  (2)解:设鸡有x只,鸭有3x只。 x+3x=56

  (3)解:设鸭有x只,鸡有3x只。 x+3x=56

  商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?

  (1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26

  (2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26

  四、课堂总结。

  今天我们一起学习了什么?你感觉到今天学的应用题有什么特点?那你有哪些收获呢?还有什么疑问吗?

  老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。

  五、作业:

练习二十一/2—5

;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式