初二的数学函数应该怎么学

 我来答
学海语言教育
2022-06-29 · TA获得超过5575个赞
知道大有可为答主
回答量:4909
采纳率:100%
帮助的人:236万
展开全部

  想学好函数,第一要牢固掌握基本定义及对应的图像特征,以下是我分享给大家的初二函数数学学习的方法的资料,希望可以帮到你!

  初二函数数学学习的方法

  一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

  二、牢记几种基本初等函数及其相关性质、图象、变换。中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

  三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求童鞋们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

  四、多做题,多向老师请教,多总结吧。多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!

  初二数学两极分化的原因及对策

  (1)对概念和公式要能融会贯通。这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?这一点吴铮老师已经强调了三百四十多遍了,我已经胃部严重不适了,下次再聊到这个话题,我一定会再继续强调。因为有的孩子吧,心宽,老师的话左耳朵进右耳朵出,我必须得一直唠唠叨叨下去。

  (2)总结相似的类型题目。这个事,不仅仅是老师的事,孩子也要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初三以后,会发现,有一部分孩子天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。我们的建议是:“总结归纳”是将题目越做越少的最好办法。对于不同的题目,我们有不同的解题技巧,古人云,铁打的技巧流水的题,只要咱们掌握了技巧,那就可以人挡杀人,佛挡杀佛,如果掌握不了技巧,那就悲剧了,变成人挡人杀你,佛当佛杀你。

  (3)收集自己的典型错误和不会的题目。孩子最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。孩子做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,孩子只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。其实我们最大的问题就是总会忽略自己的问题,却不知道把我们不会的题目弄会了,我们就进步了。许多人喜欢狂做自己会做的题目,去体验一种居高临下,庖丁解牛的感觉,碰见自己不会了,立马就开始退缩,最后庖丁被牛解了。

  (4)就不懂的问题,积极提问、讨论发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多孩子都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。现在的孩子自尊心都是很强的,总感觉向别人问问题是一种示弱的表现,所以自己要跟这道题目死磕,后来两败俱伤—他浪费了大把的时间,题目最后也被他撕碎了。

  (5)注重实战(考试)经验的培养考试本身就是一门学问。有些孩子平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要孩子在平时的做题中解决。每次考试总会遇见有些孩子非常紧张,把考场当成了战场,甚至刑场,乃至屠宰场,但是他却没有我自横刀向天笑,笑完继续去睡觉的洒脱,总是担心自己考不好怎么办?或者考好了但是老师阅卷阅错了怎么办?这些都是不好的习惯。

  初二数学下册函数知识点汇总分享

  一、函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法:用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接

  正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,如果

  2、一次函数的图像

  所有一次函数的图像都是一条直线。

  3、一次函数、正比例函数图像的主要特征:

  一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。(如下图)

  4. 正比例函数的性质

  一般地,正比例函数y=kx有下列性质:

  (1)当k>0时,图像经过第一、三象限,y随x的增大而增大;

  (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

  5、一次函数的性质

  一般地,一次函数y=kx+b有下列性质:

  (1)当k>0时,y随x的增大而增大

  (2)当k<0时,y随x的增大而减小

  6、正比例函数和一次函数解析式的确定

  确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b(k≠0)中的常数k和b。解这类问题的一般方法是待定系数法。

  图像分析:

  k>0,b>0,图像经过一、二、三象限,y随x的增大而增大。

  k>0,b<0,图像经过一、三、四象限,y随x的增大而增大。

  k<0,b>0, 图像经过一、二、四象限,y随x的增大而减小

  k<0,b<0,图像经过二、三、四象限,y随x的增大而减小。

  注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

  二、四边形

  基本概念:

  四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.

  定理:中心对称的有关定理

  1.关于中心对称的两个图形是全等形.

  2.关于中心对称的两个图形,对称点连线都经过对称中心,被对称中心平分.

  3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.

  公式:

  1.S菱形 =1/2ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)

  2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)

  3.S梯形 =1/2(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)

  常识:

  1.若n是多边形的边数,则对角线条数公式是:n(n-3)/2

  2.规则图形折叠一般“出一对全等,一对相似”.

  3.如图:平行四边形、矩形、菱形、正方形的从属关系.

  4.常见图形中,

  仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形…… ;

  仅是中心对称图形的有:平行四边形 …… ;

  是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .

  注意:线段有两条对称轴.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式