(1+x)的n次方展开式是什么?

 我来答
社无小事
高能答主

2022-03-24 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20417

向TA提问 私信TA
展开全部

1+x的n次方展开式公式是:(x-1)^n=Cn0x^n+Cn1x^(n-1)(-1)^1+Cn2x^(n-2)(-1)^2+……+Cn(n-1)x(-1)^(n-1)+Cnn(-1)^n(x+1)^n。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者,泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要,透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。

泰勒中值定理:

若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和。

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x)。

其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。

使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。

Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
陈余幸运
2023-07-27 · 生活的本意是平淡且知足
陈余幸运
采纳数:294 获赞数:6686

向TA提问 私信TA
展开全部
(1+x)的n次方展开式
是:(x-1)^n=Cn0x^n+Cn1x^(n-1)(-1)^1+Cn2x^(n-2)(-1)^2+……+Cn(n-1)x(-1)^(n-1)+Cnn(-1)^n(x+1)^n。
这是泰勒公式展开式,泰勒公式最典型的应用就是求任意函数的近似值。泰勒公式还可以求等价无穷小,证明不等式,求极限等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活达人唐鲜生
2023-07-16 · TA获得超过123个赞
知道小有建树答主
回答量:1789
采纳率:93%
帮助的人:78.6万
展开全部
(1+x)的n次方展开式是:

(1)^n = C(n, 0) * x^0 + C(n, 1) * x^1 + C(n, 2) * x^2 + ... + C(n, n-1) * x^(n-1) + C(n, n) * x^n

其中,C(n, k)是组合数公式,表示从n个元素中选取k个元素的组合数。展开式中的各项依次为一次方项、二次方项、三次方项......直到n次方项。

展开式中每一项的系数由组合数公式决定,而指数则由x的幂次决定。这个展开式是通过二项式定理得出的,它描述了(1+x)的n次方的展开形式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式