向量的积是什么呢?
向量的积是向量的点乘。其大小为aXb等于a乘b乘sinθ,方向用右手法则确定,两个向量和的叉积写作×有时也被写成∧,避免和字母x混淆,叉积可以定义为,在这里θ表示和之间的角度,它位于这两个矢量所定义的平面上。而是一个与、所构成的平面垂直的单位矢量。
向量的内容
向量,也称为欧几里得向量,几何向量,矢量,指具有大小和方向的量,它可以形象化地表示为带箭头的线段,箭头所指,代表向量的方向,线段长度,代表向量的大小,与向量对应的只有大小,没有方向的量物理学中称标量。
在物理学和工程学中,几何向量更常被称为矢量,许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量,一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念,此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用,因此,平日阅读时需按照语境来区分文中所说的向量是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。