在复数范围内解方程z^2+2z+1-i=0
展开全部
设z=x+yi
则x^2-y^2+2xyi+2x+2yi+1-i=0
(x^2-y^2+2x+1)+(2xy+2y-1)i=0
所以(x+1)^2-y^2=0 (1)
2xy+2y-1=0 (2)
由(1)知:y=±(x+1)
由(2)知:(x+1)y=1/2>0
所以y=x+1,所以(x,y)=(√2/2-1,√2/2)或(-√2/2-1,-√2/2)
所以z=√2/2-1+√2/2i或-√2/2-1-√2/2i
则x^2-y^2+2xyi+2x+2yi+1-i=0
(x^2-y^2+2x+1)+(2xy+2y-1)i=0
所以(x+1)^2-y^2=0 (1)
2xy+2y-1=0 (2)
由(1)知:y=±(x+1)
由(2)知:(x+1)y=1/2>0
所以y=x+1,所以(x,y)=(√2/2-1,√2/2)或(-√2/2-1,-√2/2)
所以z=√2/2-1+√2/2i或-√2/2-1-√2/2i
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询