小升初数学简便运算方法归类

 我来答
温屿17
2022-06-03 · TA获得超过1.2万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:95.5万
展开全部

2018小升初数学简便运算方法归类

  小学数学中,从一年级到六年级一直贯穿着一个内容,那就是简便运算。在整数范围、小数范围、分数范围内都做为一个内容重复出现。而这个内容也正是小学数学中的一个难点。下面为大家提供小升初简便运算方法,希望对小升初同学们备考数学有帮助~

  一、拆分法

  顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。

  例如:

  3.2×12.5×25

  =8×0.4×12.5×25

  =8×12.5×0.4×25

  二、提取公因式

  这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。

  注意相同因数的提取。

  例如:

  0.92×1.41+0.92×8.59

  = 0.92×(1.41+8.59)

  三、借来借去法

  看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。

  考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的'时候,往往使用借来借去法。

  例如:

  9999+999+99+9

  =9999+1+999+1+99+1+9+1—4

  四、加法结合律

  注意对加法结合律(a+b)+c=a+(b+c)

  的运用,通过改变加数的位置来获得更简便的运算。

  例如:

  5.76+13.67+4.24+6.33

  =(5.76+4.24)+(13.67+6.33)

  五、拆分法和乘法分配律结合

  这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。

  例如:

  34×9.9

  =34×(10-0.1)

  案例再现:

  57×101=?

  六、利用基准数

  在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。

  例如:

  2072+2052+2062+2042+2083

  =(2062x5)+10-10-20+21

  七、利用公式法(必背)

  (1) 加法:

  交换律,a+b=b+a,

  结合律,(a+b)+c=a+(b+c).

  (2) 减法运算性质:

  a-(b+c)=a-b-c,

  a-(b-c)=a-b+c,

  a-b-c=a-c-b,

  (a+b)-c=a-c+b=b-c+a.

  (3) 乘法(与加法类似):

  交换律,a*b=b*a,

  结合律,(a*b)*c=a*(b*c),

  分配率,(a+b)xc=ac+bc,

  (a-b)*c=ac-bc.

  (4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,

  a÷(b÷c)=a÷bxc,

  a÷b÷c=a÷c÷b,

  (a+b)÷c=a÷c+b÷c,

  (a-b)÷c=a÷c-b÷c.

  前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。

  例1:

  283+52+117+148

  =(283+117)+(52+48)

  (运用加法交换律和结合律)。

  减号或除号后面加上或去掉括号,后面数值的运算符号要改变。

  例2:

  657-263-257

  =657-257-263

  =400-263

  (运用减法性质,相当加法交换律。)

  例3:

  195-(95+24)

  =195-95-24

  =100-24

  (运用减法性质)

  例4;

  150-(100-42)

  =150-100+42

  (同上)

  例5:

  (0.75+125)*8

  =0.75*8+125*8=6+1000

  . (运用乘法分配律))

  例6:

  ( 125-0.25)*8

  =125*8-0.25*8

  =1000-2

  (同上)

  例7:

  (1.125-0.75)÷0.25

  =1.125÷0.25-0.75÷0.25

  =4.5-3=1.5。

  ( 运用除法性质)

  例8:

  (450+81)÷9

  =450÷9+81÷9

  =50+9=59.

  (同上,相当乘法分配律)

  例9:

  375÷(125÷0.5)

  =375÷125*0.5=3*0.5=1.5.

  (运用除法性质)

  例10:

  4.2÷(0。6*0.35)

  =4.2÷0.6÷0.35

  =7÷0.35=20.

  (同上)

  例11:

  12*125*0.25*8

  =(125*8)*(12*0.25)

  =1000*3=3000.

  (运用乘法交换律和结合律)

  例12:

  (175+45+55+27)-75

  =175-75+(45+55)+27

  =100+100+27=227.

  (运用加法性质和结合律)

  例13:

  (48*25*3)÷8

  =48÷8*25*3

  =6*25*3=450.

  (运用除法性质, 相当加法性质)

;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式