多元函数求极限
1个回答
展开全部
设y'(x0)=y'0
把y'(x)看成函数,根据一阶微分方程的求解公式,有
y'(x)=y'0*e^[-a(x-x0)]+e^[-a(x-x0)]*∫(x0,x)f(t)e^[a(t-x0)]dt
lim(x->+∞) y'(x)
=lim(x->+∞) y'0*e^[-a(x-x0)]+lim(x->+∞) e^[-a(x-x0)]*∫(x0,x)f(t)e^[a(t-x0)]dt
=0+lim(x->+∞) {∫(x0,x)f(t)e^[a(t-x0)]dt}/e^[a(x-x0)]
=lim(x->+∞) f(x)e^[a(x-x0)]/ae^[a(x-x0)]
=lim(x->+∞) f(x)/a
=b/a
把y'(x)看成函数,根据一阶微分方程的求解公式,有
y'(x)=y'0*e^[-a(x-x0)]+e^[-a(x-x0)]*∫(x0,x)f(t)e^[a(t-x0)]dt
lim(x->+∞) y'(x)
=lim(x->+∞) y'0*e^[-a(x-x0)]+lim(x->+∞) e^[-a(x-x0)]*∫(x0,x)f(t)e^[a(t-x0)]dt
=0+lim(x->+∞) {∫(x0,x)f(t)e^[a(t-x0)]dt}/e^[a(x-x0)]
=lim(x->+∞) f(x)e^[a(x-x0)]/ae^[a(x-x0)]
=lim(x->+∞) f(x)/a
=b/a
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询