椭圆斜率之积结论
1个回答
展开全部
椭圆和双曲线中的几个斜率乘积为定值的结论如下:
椭圆和双曲线中有几个斜率乘积为定值。以标准的焦点在x轴的椭圆为例,有四个如下结论:
椭圆上一动点与两个x轴上的顶点连线的斜率乘积为-b^2/a^2.
椭圆内一条弦所在直线的斜率与该弦中点与原点连线直线的斜率乘积为定值-b^2/a^2.前提,弦不平行于坐标轴。
椭圆内一条过原点的弦,其两端与椭圆上任意一点的连线的斜率乘积为-b^2/a^2.同样保证斜率存在。
椭圆的一条切线斜率与 过原点且经过切点的直线的斜率乘积为-b^2/a^2.
若是焦点在y轴上,则结果的a,b互换;若是椭圆换成双曲线,则斜率乘积的定值结果为b^2/a^2,去掉“负号”.
与椭圆斜率之积有关的结论是椭圆上的点与椭圆的长轴两端点连线的斜率之积是定值,斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。
坐标 ,数学名词。
指为确定天球上某一点的位置,在天球上建立的球面坐标系。基本平面;由天球上某一选定的大圆所确定。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询