椭圆中点弦斜率公式结论

 我来答
愿君安好xdk
2022-12-07 · TA获得超过402个赞
知道大有可为答主
回答量:3296
采纳率:100%
帮助的人:86.8万
展开全部

椭圆中点弦斜率公式:以椭圆为例,椭圆方程x^2/a^2+y^2/b^2=1,(a〉b〉0)。设直线l与椭圆交于A(x1,y1),B(x2,y2),中点N(x0,y0)。x1^2/a^2+y1^2/b^2=1。x2^2/a^2+y2^2/b^2=1。

椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。

椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。

切线法线

定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。(也就是说,椭圆在点P处的切线即为∠F1PF2的外角平分线所在的直线)。

定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。

上述两定理的证明可以查看参考资料。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式