三元一次方程怎么解 详细过程
三元一次方程组求解是应用消元的思想,运用代入法或加减法,消掉一个未知数,使三元一次方程组转化为二元一次方程组。然后解二元一次方程,得到方程组两个未知数的根,代入原方程组中合适的方程中,得到最后一个未知数的根,从而得到原三元一次方程组的解。
初中关于三元一次方程组的内容,是在二元一次方程组的章节最后的。因为三元一次方程组的解法和思路与二元一次方程组的解法和思路是非常相似的。同样是根据消元的思想,运用代入法或加减法,消掉一个未知数。
二元一次方程组消掉一个未知数后就得到一个一元一次方程,解这个方程得到二元一次方程组的一个未知数的根,再把这个未知数的根代入原方程组中的一个适当的方程,就可以得到另一个未知数的根,从而得到原二元一次方程组的解。
三元一次方程是含有三个未知数并且未知数的项的次数都是1的方程,也就是含有3个未知数的一次方程,其一般形式为ax+by+cz=d。由多个一元一次方程组成并含有三个未知数的方程组叫做三元一次方程组,其求解方法一般为利用消元思想使三元变二元,再变一元。
含有3个未知数,并且含有未知数的项的次数都是1的整式方程叫做三元一次方程,可化为一般形式ax+by+cz=d(a、b、c≠0)或ax+by+cz+d=0(a、b、c≠0)。