组合与排列有什么区别?
一、含义不同:
1、排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;
从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
a31表示:从3个不同元素中,任取1(1≤3,1与3均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从3个不同元素中取出1个元素的一个排列。
2、组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;
从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
c31表示:从3个不同元素中,任取1(1≤3)个元素并成一组,叫做从3个不同元素中取出1个元素的一个组合。
二、计算公式不同:
1、 A(n,m)=n(n-1)(n-2)......(n-m+1)=n!/(n-m)!
2、C(n,m)=A(n,m)/m!=n!/【m!(n-m)!】
但二者计算结果相同,都是3。
扩展资料:
组合数递推公式:
c(n,m)=c(n-1,m-1)+c(n,m-1)
等式左边表示从m个元素中选取n个元素,而等式右边表示这一个过程的另一种实现方法:
任意选择m中的某个备选元素为特殊元素,从m中选n个元素可以由此特殊元素的被包含与否分成两类情况,即n个被选择元素包含了特殊元素和n个被选择元素不包含该特殊元素。
前者相当于从m-1个元素中选出n-1个元素的组合,即c(m-1,n-1);后者相当于从m-1个元素中选出n个元素的组合,即c(m-1,n)。
c(n,0)+c(n,1)+c(n,2)+……+c(n,n)=2的n次方
相关运用:(a+b)的n次方的二项式定理的系数,即为此数列;任何集合的子集个数也为用为此数列,而得出为2的n次方个。
参考资料来源:百度百科-排列组合