在△ABC中,求证:sin^2A+sin^2B-sin^2C=2sinAsinBcosC
展开全部
证明左边=1/2(1-cos2A)+1/2(1-cos2B)-(1-cos²C)
=cos²C-1/2(cos2A+cos2B)
=cos²C-cos(A+B)·cos(A-B)
=cos²C+cosC·cos(A-B)
=cosC[cosC+cos(A-B)]
=cosC2cos1/2(C+A-B)cos1/2(C-A+B)
=2cosCcos1/2(180°-2B)cos(1/2)(180°-2A)
=2cosCcos(90°-B)cos(90°-A)
=2sinAsinBcosC=右边
=cos²C-1/2(cos2A+cos2B)
=cos²C-cos(A+B)·cos(A-B)
=cos²C+cosC·cos(A-B)
=cosC[cosC+cos(A-B)]
=cosC2cos1/2(C+A-B)cos1/2(C-A+B)
=2cosCcos1/2(180°-2B)cos(1/2)(180°-2A)
=2cosCcos(90°-B)cos(90°-A)
=2sinAsinBcosC=右边
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询