设A,B为n阶矩阵,且满足A^2=A,B^2=B,(A+B)^2=(A+B),证明:AB=0.

 我来答
新科技17
2022-08-25 · TA获得超过5902个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.8万
展开全部
(A+B)(A+B)=A+B
A+B=E

(A+B)^2=A^2+B^2+AB+BA
=A+B+AB+BA=A+B

AB+BA=0

AB+BA=AB+B(E-B)
=AB+B-B^2
=AB
=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式