一个正整数n,当n>1时,求这个正整数的倒数

 我来答
小小芝麻大大梦
高粉答主

2022-09-19 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:959万
展开全部

设S(x)=∑nx^n。∴原式=S(1/2)。

而,S(x)=∑nx^n=x∑nx^(n-1)。又,当丨x丨<1时,∑nx^(n-1)=[∑x^n]'=[x/(1-x)]'=1/(1-x)²,
∴丨x丨<1时,S(x)=∑nx^n=x/(1-x)²。

∴原式=S(1/2)=2。

扩展资料

一类重要的函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。

例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。

级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。

因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式