求微分方程xy'+y=yln(xy)的通解

 我来答
大沈他次苹0B
2022-08-18 · TA获得超过7338个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:179万
展开全部
d(xy)/dx=yln(xy)
令u=xy,则y=u/x
所以du/dx=u/x*lnu
du/(ulnu)=dx/x
两边积分:ln|lnu|=ln|x|+C
即lnu=Cx
xy=u=e^(Cx)
y=e^(Cx)/x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式