4x×2(x-9)=54列方程?
2个回答
展开全部
4X*2X-4X*9=54 8X^2-36X=54
2X^2-9X=16
2X^2-9X=16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好:
解:
4x×2(x-9)=54
8x²-72x-54=0
4x²-36x-27=0
x²-9x-6.75=0
△=(-9)²-4×1×(-6.75)
=81+27
=108
=36×3
x=(9±6√3)/2
x=4.5±3√3
使方程左右两边相等的未知数的值,叫做方程的解。求方程全部的解或判断方程无解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
相关概念:
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6.注意事项:写“解”字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。
解一元一次方程的一般步骤:
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、分解因式法。
⒈直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的 方程,其解为x=±√n+m .
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+(b/a)x = - c/a
方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2
方程左边成为一个完全平方式:(x+b/2a)^2 = -c/a﹢﹙b/2a)^2;
当b^2-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚^2;
∴x=﹛﹣b±[√﹙b^2;﹣4ac﹚]﹜/2a(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b^2-4ac)]/(2a),(b^2-4ac≥0)就可得到方程的根。
解:
4x×2(x-9)=54
8x²-72x-54=0
4x²-36x-27=0
x²-9x-6.75=0
△=(-9)²-4×1×(-6.75)
=81+27
=108
=36×3
x=(9±6√3)/2
x=4.5±3√3
使方程左右两边相等的未知数的值,叫做方程的解。求方程全部的解或判断方程无解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
相关概念:
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6.注意事项:写“解”字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。
解一元一次方程的一般步骤:
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、分解因式法。
⒈直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的 方程,其解为x=±√n+m .
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+(b/a)x = - c/a
方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2
方程左边成为一个完全平方式:(x+b/2a)^2 = -c/a﹢﹙b/2a)^2;
当b^2-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚^2;
∴x=﹛﹣b±[√﹙b^2;﹣4ac﹚]﹜/2a(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b^2-4ac)]/(2a),(b^2-4ac≥0)就可得到方程的根。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询