求微分方程得解(1-x^2)dy+(x+xy^2)dx=0
1个回答
展开全部
(1-x^2)dy+(x+xy^2)dx=0
(1-x^2)dy=-x(1+y^2)dx
dy/(y^2+1)=xdx/(x^2-1)
dy/(y^2+1)=d(x^2-1)/2(x^2-1)
2dy/(y^2+1)=d(x^2-1)/(x^2-1)
2arctany =ln|x^2-1| +C
arctany=ln√(x^2-1) +C
y=tan[ln√(x^2-1) +C]
(1-x^2)dy=-x(1+y^2)dx
dy/(y^2+1)=xdx/(x^2-1)
dy/(y^2+1)=d(x^2-1)/2(x^2-1)
2dy/(y^2+1)=d(x^2-1)/(x^2-1)
2arctany =ln|x^2-1| +C
arctany=ln√(x^2-1) +C
y=tan[ln√(x^2-1) +C]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询