已知函数f(x)=sinx+cosx 求函数f(x)的最大值
1个回答
展开全部
f(x)=√2[(√2/2)sinx+(√2/2)cosx]=√2[sinxcos(π/4)+cosxsin(π/4)]=√2sin(x+π/4)
1、最大值是√2,此时x+π/4=2kπ+π/2,即取得最大值是取值集合是:{x|x=2kπ+π/4,k∈Z}
2、这个函数可以由y=sinx ====>>>>> 向左平移π/4个单位【得到y=sin(x+π/4)】,再将所得到的函数图像上所有点的横坐标不变,纵坐标增加到原来的√2倍,得:y=√2sin(x+π/4),即:y=sinx+cosx
1、最大值是√2,此时x+π/4=2kπ+π/2,即取得最大值是取值集合是:{x|x=2kπ+π/4,k∈Z}
2、这个函数可以由y=sinx ====>>>>> 向左平移π/4个单位【得到y=sin(x+π/4)】,再将所得到的函数图像上所有点的横坐标不变,纵坐标增加到原来的√2倍,得:y=√2sin(x+π/4),即:y=sinx+cosx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询