e^(1/x)积分的结果是什么?如果不是初等函数,那么能用其他函数表示吗?

 我来答
世纪网络17
2022-08-03 · TA获得超过5955个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
这个结果不是初等函数.
下面很简单说明这不是初等函数的原因.
令t=1/x,则x=1/t,dx = d(1/t) = -1/(t^2)dt
原不定积分= ∫ e^t * (-1/(t^2)) dt = - ∫ e^t/t^2 dt
根据分部积分法 ∫ udv = uv - ∫ vdu,得
∫ 1/t^2 d(e^t) =- ∫ 1/t^2 d(e^t)
= e^t/t^2 - ∫ e^t d(1/t^2) = e^t/t^2 - ∫ e^t * (-1/(t^3)) dt
=e^t/t^2 + ∫ e^t /t^3 dt
因此 原不定积分 = - ∫ 1/t^2 d(e^t)= -(e^t/t^2 + ∫ e^t /t^3 dt)
又可以继续对∫ e^t /t^3 dt进行分部积分,如此不断,直至无穷.
事实上把 ∫ e^t/t^2 dt 中的t的指数改成1后,∫ e^t/t dt 同样可以进行如上的分部积分.
因此∫ e^t/t dt 是一个无穷级数,∫ e^t/t dt = e^t/t + e^t/t^2 + e^t/t^3 + ...
(直觉上具有这种无穷级数形式的就不是初等函数了~)
用Risch算法可以说明e^t/t的原函数不是任何初等函数的组合,不是初等函数.
对∫ e^t/t dt 分部积分得:
∫ e^t/t dt = e^t/t + ∫ e^t /t^2 dt
因此∫ e^t /t^2 dt = ∫ e^t/t dt - e^t/t
既然∫ e^t/t dt 不是初等函数,那么它减去一个初等函数后也不是初等函数
因此∫ e^t /t^2 dt 也不是初等函数
因此原不等积分
∫ e^(1/x) dx = ∫ e^t /t^2 dt = ∫ e^t/t dt - e^t/t = ∫ e^t/t dt - xe^(1/x) 也不是初等函数
其中,∫ (负无穷到x) e^t/t dt 常用 Ei (x)表示,只能用初等函数(例如多项式)逼近
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式