3个回答
展开全部
∫ x/(1+cosx) dx
=(1/2)∫ x/[cos(x/2)]^2 dx
=(1/2)∫ x[sec(x/2)]^2 dx
=∫ xdtan(x/2)
=xtan(x/2) -∫ tan(x/2) dx
=xtan(x/2) -∫ [sin(x/2)/cos(x/2)] dx
=xtan(x/2) +2∫ dcos(x/2)/cos(x/2)
=xtan(x/2) +2ln|cos(x/2)| + C
=(1/2)∫ x/[cos(x/2)]^2 dx
=(1/2)∫ x[sec(x/2)]^2 dx
=∫ xdtan(x/2)
=xtan(x/2) -∫ tan(x/2) dx
=xtan(x/2) -∫ [sin(x/2)/cos(x/2)] dx
=xtan(x/2) +2∫ dcos(x/2)/cos(x/2)
=xtan(x/2) +2ln|cos(x/2)| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫xdx/(1+cosx) = ∫xdx/{2[cos(x/2)]^2} = ∫xd(x/2)/[cos(x/2)]^2
= ∫xd[tan(x/2)] = xtan(x/2) - ∫tan(x/2)dx = xtan(x/2) - 2∫tan(x/2)d(x/2)
= xtan(x/2) + 2ln|cos(x/2)| + C
= ∫xd[tan(x/2)] = xtan(x/2) - ∫tan(x/2)dx = xtan(x/2) - 2∫tan(x/2)d(x/2)
= xtan(x/2) + 2ln|cos(x/2)| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询