π是什么??
展开全部
数学中“π”是一个无限不循环小数,约等于3.14,以50位为例,数值如下是:3.14159265358979323846264338327950288419716939937510……
圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
π的由来介绍:
π最早发源于希腊词汇περιφρεια(peripheria),即边缘,边界之意。尽管四大古文明中早有它的身影,π真正作为一个通用常数被定义仍然要回溯到17世纪。
1748年,数学家欧拉通过在他的著作《无穷小分析引论》中定义并使用π,才真正将它带进了数学界的认识中。可能是因为定义简单以及在数学公式中随处可见,π在流行文化中的出现频率及地位远远高于其他数学常数。
展开全部
这是圆周率。
祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。
圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。中国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。
东汉张衡推算出的圆周率值为3.162。三国时王蕃推算出的圆周率数值为3.155。魏晋的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术,将圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428,皮延宗求出圆周率值为22/7≈3.14。
祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。
根据《隋书·律历志》关于圆周率(π)的记载:“宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三点一四一五九二七,亏数三点一四一五九二六,正数在盈亏二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;一个是亏数(即不足的近似值),为3.1415926。
祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。
圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。中国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。
东汉张衡推算出的圆周率值为3.162。三国时王蕃推算出的圆周率数值为3.155。魏晋的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术,将圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428,皮延宗求出圆周率值为22/7≈3.14。
祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。
根据《隋书·律历志》关于圆周率(π)的记载:“宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三点一四一五九二七,亏数三点一四一五九二六,正数在盈亏二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;一个是亏数(即不足的近似值),为3.1415926。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询