求解一道高中数学题,在线等!
若K∈Z求证:sin[(K+1)π+a]cos[(k+1)π-a]分之sin(Kπ-a)cos(kπ+a)=-1注意是个分式方程啊!术解题过程和答案,谢谢啦!...
若K∈Z求证:sin[(K+1)π+a]cos[(k+1)π-a]分之sin(Kπ-a)cos(kπ+a)=-1注意是个分式方程啊!术解题过程和答案,谢谢啦!
展开
3个回答
展开全部
插入不了公式,不然已经给你写好了,你把分母分为sin[π+(Kπ+a)]cos[π+(kπ-a)]然后展开,因为sinkπ=0,所以会有sin(Kπ+a)cos(kπ-a)分子中sin(Kπ-a)=-sin(-Kπ+a)=-sin(Kπ+a) cos(kπ+a)=
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:当k是偶数时,k+1就是奇数,于是:
左边=(-sinαcosα)/[(-sinα)(-cosα)]=-1=右边
当k是奇数时,k+1就是偶数,此时:
左边=[(sinα)(-cosα)]/(sinαcosα)=-1=右边
故证。
左边=(-sinαcosα)/[(-sinα)(-cosα)]=-1=右边
当k是奇数时,k+1就是偶数,此时:
左边=[(sinα)(-cosα)]/(sinαcosα)=-1=右边
故证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询