椭圆的简单几何性质有哪些?
1个回答
展开全部
椭圆的简单几何性质(1)复习:1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。
2.椭圆的标准方程是:
3.椭圆中a,b,c的关系是:a2=b2+c2当焦点在X轴上时
当焦点在Y轴上时
1、范围:
-a≤x≤a, -b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中
椭圆的对称性
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。
从方程上看:
(1)把x换成-x方程不变,图象关于y轴对称;
(2)把y换成-y方程不变,图象关于x轴对称;
(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。
3、椭圆的顶点
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点?
*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
a、b分别叫做椭圆的长半轴长和短半轴长。
根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A1
4、椭圆的离心率
离心率:椭圆的焦距与长轴长的比:
叫做椭圆的离心率。
[1]离心率的取值范围:
[2]离心率对椭圆形状的影响:0<e<11)e 越接近 1,c 就越接近 a,从而 b就越小,椭圆就越扁
2)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆
[3]e与a,b的关系:
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>ba2=b2+c2|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>ba2=b2+c2|x|≤ b,|y|≤ a同前(b,0)、(-b,0)、(0,a)、(0,-a)
(0 , c)、(0, -c)同前同前同前例1已知椭圆方程为16x2+25y2=400,
它的长轴长是: 。短轴长是: 。
焦距是: 。 离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。108680
2、确定焦点的位置和长轴的位置
已知椭圆方程为6x2+y2=6
它的长轴长是: 。短轴长是: 。
焦距是: .离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。2练习1.
例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。
分类讨论的数学思想小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握 数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。
2.椭圆的标准方程是:
3.椭圆中a,b,c的关系是:a2=b2+c2当焦点在X轴上时
当焦点在Y轴上时
1、范围:
-a≤x≤a, -b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中
椭圆的对称性
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。
从方程上看:
(1)把x换成-x方程不变,图象关于y轴对称;
(2)把y换成-y方程不变,图象关于x轴对称;
(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。
3、椭圆的顶点
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点?
*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
a、b分别叫做椭圆的长半轴长和短半轴长。
根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A1
4、椭圆的离心率
离心率:椭圆的焦距与长轴长的比:
叫做椭圆的离心率。
[1]离心率的取值范围:
[2]离心率对椭圆形状的影响:0<e<11)e 越接近 1,c 就越接近 a,从而 b就越小,椭圆就越扁
2)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆
[3]e与a,b的关系:
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>ba2=b2+c2|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>ba2=b2+c2|x|≤ b,|y|≤ a同前(b,0)、(-b,0)、(0,a)、(0,-a)
(0 , c)、(0, -c)同前同前同前例1已知椭圆方程为16x2+25y2=400,
它的长轴长是: 。短轴长是: 。
焦距是: 。 离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。108680
2、确定焦点的位置和长轴的位置
已知椭圆方程为6x2+y2=6
它的长轴长是: 。短轴长是: 。
焦距是: .离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。2练习1.
例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。
分类讨论的数学思想小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握 数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询