∫4÷(x²+x+1)dx
展开全部
先化简:
=∫4dx/(x²+x+1/4 + 3/4)
=∫4dx/[(x+1/2)²+(√3/2)²]
设 x+1/2 = √3/2 * tanα。则有:
α = arctan[2√3/3 * (x+1/2)]
d(x+1/2) = dx = √3/2 * sec²α * dα
代入上面的积分式,得到:
=∫4 * √3/2 * sec²α * dα/[3/4 * (tan²α + 1)]
=∫8√3/3 * dα
= 8√3/3 * α + C
= 8√3/3 * arctan[2√3/3 * (x+1/2)] + C
=∫4dx/(x²+x+1/4 + 3/4)
=∫4dx/[(x+1/2)²+(√3/2)²]
设 x+1/2 = √3/2 * tanα。则有:
α = arctan[2√3/3 * (x+1/2)]
d(x+1/2) = dx = √3/2 * sec²α * dα
代入上面的积分式,得到:
=∫4 * √3/2 * sec²α * dα/[3/4 * (tan²α + 1)]
=∫8√3/3 * dα
= 8√3/3 * α + C
= 8√3/3 * arctan[2√3/3 * (x+1/2)] + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询