1/(1+ x^3)的不定积分怎么求?

 我来答
社无小事
高能答主

2023-04-11 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20363

向TA提问 私信TA
展开全部

1/(1+x^3)的不定积分详细的解题过程如下:

相关介绍:

在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′ =f。不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行,这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

国马保
2023-04-12 · TA获得超过164个赞
知道大有可为答主
回答量:4296
采纳率:100%
帮助的人:66.1万
展开全部
可以使用换元法来求解这个不定积分。设 u = 1 + x^3,那么 du/dx = 3x^2,从而 dx = du/(3x^2+3) = du/(3(x^2+1))。将这个式子代入原式中得到:
∫1/(1+x^3) dx = ∫1/[(1+x)(1-x+ x^2)] dx
= ∫[1/3(x+1) - 1/3(x-2)/(x^2 - x + 1)] dx
对于第一项,可以直接使用常数函数的不定积分公式得到:
∫1/3(x+1) dx = ln|x+1|/3 + C1
对于第二项,可以通过分母的完全平方式,使得分式分解为两个一次分式的和:
1/(x^2 - x + 1) = 1/[(x-1/2)^2 + 3/4]
= (2/3) / [(x-1/2)^2 + 3/4] + (1/3) / [1 + (x-1/2)^2/3/4]
对于第一项,可以使用反正切函数的不定积分公式得到:
∫(2/3) / [(x-1/2)^2 + 3/4] dx = (2/3) arctan[(x-1/2)/(√3/2)] + C2
对于第二项,可以使用对数函数的不定积分公式得到:
∫(1/3) / [1 + (x-1/2)^2/3/4] dx = (1/√3) ln |(x-1/2)/(√3/2) + √[1 + (x-1/2)^2/3/4]| + C3
因此,原式的不定积分为:
∫1/(1+x^3) dx = ln|x+1|/3 + (2/3) arctan[(x-1/2)/(√3/2)] + (1/√3) ln |(x-1/2)/(√3/2) + √[1 + (x-1/2)^2/3/4]| + C
其中,C1、C2、C3和C为任意常数。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式