为什麽函数F(x)在[0,1]上可导?
展开全部
利用定积分的柯西-许瓦茨不等式,可得|f(1)|小于等于右边的定积分,不等式恒成立则,|f(x)|的最大值小于等于右边的定积分。
令 F(x) = f(x) - x, F(0) > 0, F(1) < 0, F(x)在[0,1]上可导=>连续。
故至少在(0,1)内有一点ξ,使得 F(ξ) = 0, 即 f(ξ) = ξ
下面用反证法证明 ξ 只有一个。
假设存在ξ1,ξ2∈(0,1) , F(ξ1) =0, 且 F(ξ2) = 0
由罗尔中值定理,必存在 η ∈(ξ1,ξ2), F '(η) = f '(η) - 1 = 0
=> f '(η) = 1 这与 f(x)的导数不为1 矛盾,假设错误。
因此在(0,1)内有唯一点,使得 f(ξ) = ξ
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
TableDI
2024-07-18 广告
2024-07-18 广告
VLOOKUP是Excel中用于垂直查找的函数,其基本用法包括四个参数:1. 查找值:即在数据表首列中需要搜索的值。2. 数据表:包含查找值的单元格区域或数组。3. 返回值所在列数:指定返回查询区域中第几列的值。4. 查找方式:选择精确匹配...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询