(高二数学)若abc∈R,求证:a²+b²+c²≥2(a+b+c)-3

et8733
2011-02-20 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1790
采纳率:100%
帮助的人:872万
展开全部
因为(a-1)²+(b-1)²+(c-1)²≥0,
a²+b²+c²-2(a+b+c)+3≥0,
所以a²+b²+c²≥2(a+b+c)-3 。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式