如何求导数?
导数是函数值随自变量变化的快慢程度。具体来说,它描述了函数在某一点的斜率或函数图像的弯曲程度。
假设我们有一个函数 f(x),我们想要找到它在 x 点的导数。
导数的基本定义是:
f'(x) = lim(h->0) [(f(x + h) - f(x)) / h]
这个公式描述了函数在 x 点的切线斜率。
有一些常见的求导法则,例如:
(f(x) × g(x))' = f'(x) × g(x) + f(x) × g'(x) (乘法法则)
[f(x)^n]' = n × f(x)^(n-1) × f'(x) (幂函数求导)
(sin(x))' = cos(x) (三角函数的导数)
(cos(x))' = -sin(x) (三角函数的导数)
(ln(x))' = 1/x (对数函数的导数)
了解这些法则,可以帮助我们更快地求出函数的导数。
对于函数 f(x) = x^2 + 3x + 2,它的导数为:2*x + 3。
对于函数 f(x) = sin(x),它的导数为:cos(x)。
对于函数 f(x) = cos(x),它的导数为:-sin(x)。
对于函数 f(x) = ln(x),它的导数为:1/x。