展开全部
这个函数是传说中的对号函数,这个题很简单,关键是他的思想与用途,希望对你有帮助,答案:
减区间(0,1/2) ,(-1/2,0);增区间为(1/2,正无穷),(负无穷,-1/2)
最基本的对号函数是Y= X+1/X; 把这个研究明白了就OK了
对号函数 对号函数双曲线的一种
形如y=ax+b/x(a、b不等于0)的函数
特点如下:
1.对号函数是双曲线旋转得到的,所以也有渐近线、焦点、顶点等等
2.对号函数是永远是奇函数,关于原点呈中心对称
3.对号函数的两条渐进线永远是y轴和y=ax
4.当a、b>0时,图像分布在第一、三象限两条渐近线的锐角之间部分,由于其对称性,只讨论第一象限中的情形。利用平均值不等式(a>0,b>0且ab的值为定值时,a+b≥2√ab)可知最小值是2根号ab,在x=根号下b/a的时候取得,所以在(0,根号下b/a)上单调递减,在(根号下b/a,正无穷)上单调递增
5.当a>0,b<0时,图像分布在四个象限、两条渐近线的钝角之间部分,且两条分支都是单调递增的,无极值
6.a、b其他情况可以由4、5变换得到
7.对号函数常用于研究函数的最值和恒成立问题
对号函数的应用
利用对号函数的图象及均值不等式,当x>0时,(当且仅当即时取等号),由此可得函数(a>0,b>0,x∈R+)的性质:
当时,函数(a>0,b>0,x∈R+)有最小值,特别地,当a=b=1时函数有最小值2。函数(a>0,b>0)在区间(0,)上是减函数,在区间(,+∞)上是增函数。
因为函数(a>0,b>0)是奇函数,所以可得函数(a>0,b>0,x∈R-)的性质:
当时,函数(a>0,b>0,x∈R-)有最大值-,特别地,当a=b=1时函数有最大值-2。函数(a>0,b>0)在区间(-∞,-)上是增函数,在区间(-,0)上是减函数。
利用对号函数以上性质,在解某些数学题时很简便。
减区间(0,1/2) ,(-1/2,0);增区间为(1/2,正无穷),(负无穷,-1/2)
最基本的对号函数是Y= X+1/X; 把这个研究明白了就OK了
对号函数 对号函数双曲线的一种
形如y=ax+b/x(a、b不等于0)的函数
特点如下:
1.对号函数是双曲线旋转得到的,所以也有渐近线、焦点、顶点等等
2.对号函数是永远是奇函数,关于原点呈中心对称
3.对号函数的两条渐进线永远是y轴和y=ax
4.当a、b>0时,图像分布在第一、三象限两条渐近线的锐角之间部分,由于其对称性,只讨论第一象限中的情形。利用平均值不等式(a>0,b>0且ab的值为定值时,a+b≥2√ab)可知最小值是2根号ab,在x=根号下b/a的时候取得,所以在(0,根号下b/a)上单调递减,在(根号下b/a,正无穷)上单调递增
5.当a>0,b<0时,图像分布在四个象限、两条渐近线的钝角之间部分,且两条分支都是单调递增的,无极值
6.a、b其他情况可以由4、5变换得到
7.对号函数常用于研究函数的最值和恒成立问题
对号函数的应用
利用对号函数的图象及均值不等式,当x>0时,(当且仅当即时取等号),由此可得函数(a>0,b>0,x∈R+)的性质:
当时,函数(a>0,b>0,x∈R+)有最小值,特别地,当a=b=1时函数有最小值2。函数(a>0,b>0)在区间(0,)上是减函数,在区间(,+∞)上是增函数。
因为函数(a>0,b>0)是奇函数,所以可得函数(a>0,b>0,x∈R-)的性质:
当时,函数(a>0,b>0,x∈R-)有最大值-,特别地,当a=b=1时函数有最大值-2。函数(a>0,b>0)在区间(-∞,-)上是增函数,在区间(-,0)上是减函数。
利用对号函数以上性质,在解某些数学题时很简便。
参考资料: 百度一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询