矩阵相似是否相同的特征向量?

 我来答
社无小事
高能答主

2023-06-21 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20418

向TA提问 私信TA
展开全部

相似的矩阵必有相同的特征值,但不一定有相同的特征向量。

如果A相似B,则存在非奇异矩阵是P,有P^(-1)*A*P=B。

det(xI-B)=det(xI-P^(-1)*A*P)=det(P^(-1))=det(xI-A*)det*P)=det(xI-A)。

即B的特征多项式与A的特征多项式相同,故有相同的特征值。如果A的特征向量是a的,则B的特征向量就是Pa,设x是相应的特征向量,故Ax=ax,于是:BPx=PAP^(-1)Pa=PAx=aPx。

若矩阵可对角化,则可按下列步骤来实现:

1、 求出全部的特征值。

2、对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式