如何将函数y= ln(1+ x)用导数法求导?

 我来答
fin3574
高粉答主

2023-08-06 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134591

向TA提问 私信TA
展开全部
解一:对数求导法
y = (1+x)^(1/x)
lny = (1/x)ln(1+x)
y'*1/y = ln(1+x)*(-1/x²) + (1/x)*1/(1+x)
= (1/x) * [1/(1+x) - (1/x)ln(1+x)]
y' = (1/x)(1+x)^(1/x) * [1/(1+x) - (1/x)ln(1+x)]

解二:链式法则
y = (1+x)^(1/x),令a = 1+x,z = 1/x
∴y = a^z
dy/dx = d(a^z)/d(a) * d(a)/d(x) + d(a^z)/d(z) * d(z)/d(x)
= (z)a^(z-1) * (0+1) + (a^z)(lna) * (-1/x²)
= (z)(a^z)/(a) - (a^z)(lna)(1/x²)
= (a^z) * [z/a - (lna)/x²]
= (1+x)^(1/x) * [(1/x)/(1+x) - (1/x²)ln(1+x)]
= (1/x)(1+x)^(1/x) * [1/(1+x) - (1/x)ln(1+x)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式