
初二第二学期数学题
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG‖DB的延长线于G。(1)求证:△ADE≌△CBF;(答案上说要用平行四边形和三角形中危险...
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG‖DB的延长线于G。
(1)求证:△ADE≌△CBF;(答案上说要用平行四边形和三角形中危险的性质求出,但我没思路)
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。 展开
(1)求证:△ADE≌△CBF;(答案上说要用平行四边形和三角形中危险的性质求出,但我没思路)
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。 展开
2个回答
展开全部
以下概念一定要理解透彻:
平行四边形的基本性质:对边平行且相等;对角相等。
菱形是一种特殊的平行四边形,它的四条边相等。
直角三角形的基本特点:斜边上的中线是斜边的一半。
有一个角是直角的平行四边形必然是矩形。
明白了以上这些,就迎刃而解了。
(1) AD=BC AE=CF ∠A=∠C
根据边角边定理,△ADE≌△CBF
注:图中没有中位线,只有中线。中位线的定义是三角形两条边中点的连线。
(2) 四边形AGBD的对边都是相互平行的,所以是平行四边形。
又∠ADB是直角,所以四边形AGBD是矩形。
根据EB=ED=EA,证明∠ADB是90°的直角应该不难吧。
如图,三角形的内角和等于180°,又∠1=∠2,∠3=∠4
所以,∠2+∠3 =∠1+∠4 =90°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询