2个回答
展开全部
因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
x²+2x+1=(x+1)² 公式法:包括平方差,完全平方,立方差,立方和等
x²+3x+2=(x+1)(x+2) 十字相乘法,又叫差乘试值法,是一种广泛的分解因式方法
2x+2y =2(x+y) 提公因式法,最简单的分解方法
⑶分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识。
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
拆项、添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
x²+2x+1=(x+1)² 公式法:包括平方差,完全平方,立方差,立方和等
x²+3x+2=(x+1)(x+2) 十字相乘法,又叫差乘试值法,是一种广泛的分解因式方法
2x+2y =2(x+y) 提公因式法,最简单的分解方法
⑶分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识。
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
拆项、添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
2011-02-21
展开全部
1. (a+b)(a-b)^2-(a+b)^3
=(a+b)[(a-b)^2-(a+b)^2]
=(a+b)[(a-b+a+b)(a-b-a-b)]
=(a+b)[2a*(-2b)]
=-4ab(a+b)
2. (x^m+3)-(x^m-1)
=(x^m*x^3)-(x^m/x)
=x^m[x^3-(1/x)]
=x^m[(x^4-1)/x]
=x^(m-1)*(x^2+1)(x+1)(x-1)
3. 100^2-99^2+98^2-97^2+…+4^2-3^2+2^2-1^2
=(100^2-99^2)+(98^2-97^2)+…+(4^2-3^2)+(2^2-1^2)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=(100+99)+(98+97)+…+(4+3)+(2+1)
=100+99+98+97+…+4+3+2+1
=5050
x^12+x^9+x^6+x^3+1
=(x^12+x^11+x^10+x^9+x^8) -(x^11+x^10+x^9+x^8+x^7) +x^9+x^7+x^6+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^9+x^7+x^6+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +(x^9+x^8+x^7+x^6+x^5) - (x^8+x^7+x^6+x^5+x^4) +x^7+x^6+x^4+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^5(x^4+x^3+x^2+x+1) -x^4 (x^4+x^3+x^2+x+1) +x^7+x^6+x^4+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^5(x^4+x^3+x^2+x+1) -x^4 (x^4+x^3+x^2+x+1) +(x^7+x^6+x^5+x^4+x^3) -(x^5+x^4+x^3+x^2+x) +(x^4+x^3+x^2+x+1)
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^5(x^4+x^3+x^2+x+1) -x^4(x^4+x^3+x^2+x+1) +x^3(x^4+x^3+x^2+x+1) -x(x^4+x^3+x^2+x+1) +(x^4+x^3+x^2+x+1)
=(x^4+x^3+x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)
这个够复杂了吧……
=(a+b)[(a-b)^2-(a+b)^2]
=(a+b)[(a-b+a+b)(a-b-a-b)]
=(a+b)[2a*(-2b)]
=-4ab(a+b)
2. (x^m+3)-(x^m-1)
=(x^m*x^3)-(x^m/x)
=x^m[x^3-(1/x)]
=x^m[(x^4-1)/x]
=x^(m-1)*(x^2+1)(x+1)(x-1)
3. 100^2-99^2+98^2-97^2+…+4^2-3^2+2^2-1^2
=(100^2-99^2)+(98^2-97^2)+…+(4^2-3^2)+(2^2-1^2)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=(100+99)+(98+97)+…+(4+3)+(2+1)
=100+99+98+97+…+4+3+2+1
=5050
x^12+x^9+x^6+x^3+1
=(x^12+x^11+x^10+x^9+x^8) -(x^11+x^10+x^9+x^8+x^7) +x^9+x^7+x^6+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^9+x^7+x^6+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +(x^9+x^8+x^7+x^6+x^5) - (x^8+x^7+x^6+x^5+x^4) +x^7+x^6+x^4+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^5(x^4+x^3+x^2+x+1) -x^4 (x^4+x^3+x^2+x+1) +x^7+x^6+x^4+x^3+1
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^5(x^4+x^3+x^2+x+1) -x^4 (x^4+x^3+x^2+x+1) +(x^7+x^6+x^5+x^4+x^3) -(x^5+x^4+x^3+x^2+x) +(x^4+x^3+x^2+x+1)
=x^8(x^4+x^3+x^2+x+1) -x^7(x^4+x^3+x^2+x+1) +x^5(x^4+x^3+x^2+x+1) -x^4(x^4+x^3+x^2+x+1) +x^3(x^4+x^3+x^2+x+1) -x(x^4+x^3+x^2+x+1) +(x^4+x^3+x^2+x+1)
=(x^4+x^3+x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)
这个够复杂了吧……
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询